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We present the unified theory of binary triplet state ionization followed by spin conversion to a singlet state
of radical ion pair (RIP) and subsequent spin-allowed recombination which hinders the charge separation.
An analytical theory of RIPs recombination in contact approximation is developed. At slow diffusion the
previous results which ignored the spin states have been confirmed, though the effective recombination constant
is weighted with an equilibrium share of singlet state,1/4. At faster diffusion, the spin conversion becomes
a limiting stage if not completed during encounter and/or delivery time (from the initial distance to contact).
The analytical and numerical study of charge separation in polar solutions shows that initial interion distance
is an important factor in determining the quantum yield dependence on encounter diffusion and spin conversion
rates. At distant starts the diffusional control of geminate recombination gives way to kinetic control and/or
to spin conversion control as diffusion increases. At any diffusion the quantum yield of RIPs separation
decreases with the magnetic field if the latter accelerates the spin conversion.

I. Introduction

A discovery of magnetic field effects in liquid phase
chemistry marked the beginning of the active ESR and NMR
study of photochemical radical reactions, which has become
an independent line of study known as “spin chemistry”.1 Using
very sophisticated methods of magnetic spectroscopy to solve
the spin part of the problem, most if not all of the authors
simplified as much as possible the kinematic aspect of RIPs
evolution. This part was usually considered in the frame of
the so called “exponential model,” which attributes the Poisson
distribution to the lifetimes of the radical-ion pairs ignoring their
initial distribution on interparticle distances and the diffusional
kinematics of the motion.2

The exponential model was widely accepted in photochem-
istry of electron transfer reactions in solutions.3,4 Using optical
registration of excited reactants and/or their charged products,
researchers were able to measure the quantum yield of separated
ions ignoring their spin states. Assuming that all ions (or
radical-ions) (i) are produced at contact distanceσ (ii) and
recombine only in contact, the exponential model leads to the
simplest expression for the charge separation quantum yield

whereD̃ is an encounter diffusion coefficient andz is propor-
tional to the kinetic constant of charge recombinationkr.
So the primitive approach has been replaced in a few

theoretical works by “contact approximation”.5,6 In this ap-
proximation the recombination is still considered as a contact
reaction, but the initial separation of ionsr0 is left free and is
used as a fitting parameter. It turns out that a simple parameter
z should be substituted by functionZ proportional toz when

geminate recombination is under kinetic control but linear in
diffusion when the limiting stage of the process is a delivery of
ions from starting point to contact.7,8 Contact approximation
was also successfully applied to magnetic field effects in
geminate recombination.9,10 The same was done in a more
sophisticated contact theory known as the “Green function
method” similar to the “kinematic” or “closure” approxima-
tions.11

The common demerit of all contact theories of recombination
is a crude simplification and an incorrect location of the reaction
zone moving aside with increasing exothermicity of recombina-
tion.12,13 Even more important is an arbitrariness in choosing
r0 as the initial condition for the geminate reaction. In fact,
the initial distribution overr0 is created in the course of
ionization and nobody is free to choose it voluntarily. Only by
considering ionization and the subsequent recombination as a
unified process one can eliminate the arbitrariness of the initial
distribution of interion distances. Such a “unified theory” of
photoionization followed by geminate recombination appeared
only recently14 and was very successful in calculating the real
initial distributions15, the separation quantum yields,7,16and even
the whole kinetics of the process,17 taking into account the
remote character of electron transfer. Recently the unified
theory was justified using a more fundamental and better
established convolution formalism of chemical kinetics known
as “integral encounter theory”.18

Here we make an attempt to join the unified theory and spin
chemistry using the simplest approach to the latter. Transitions
between singlet and triplet states of the RIPs will be considered
in balance approximation,9 using the rate of the singlet-triplet
conversionk0 as a single parameter sensitive to the magnetic
field. We will present the general theory for remote forward
and backward electron transfer (section II) and its simplified
version intended for contact recombination (section III). Both
of them will be used to calculate the charge separation quantum
yield in polar solutions (section IV). In contact approximation
this problem will be solved analytically and allowed to specify
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an important parameter of the theory,κ ) k0/16πσkr, which
discriminates between spin-controlled and kinetic controlled
recombination. Another parameter, 4k0σ2/D̃, determines the
diffusional and magnetic field dependence of the quantum yield
where recombination is under diffusional control. The differ-
ence between contact and remote starts will be analyzed and
the results compared with those averaged over the true distribu-
tion of interion distances.

II. Photoionization followed by Spin Conversion and
Remote Recombination

The irreversible charge transfer from an excited triplet of
donor (3D*) to the acceptor of electron (A) is a usual mechanism
of energy quenching in liquid solutions:

In the binary approximation the quenching kinetics afterδ-pulse
excitation is well described by the set of equations of “dif-
ferential encounter theory”:19-21

HereN(t) is a share of the excitations survived at timet, although
they decay with a lifetimeτD and are quenched by acceptors
given in concentrationcwith a “rate constant”kI(t). The latter
is expressed via the donor distribution around acceptorn(r,t)
that changes with time due to ionization with the position
dependent rateWI(r) and encounter diffusion of reactants with
a coefficient D. The pair distribution should satisfy the
following initial and boundary conditions:

If nothing happens to the charged products of the reaction
after ionization, as if they were immobile and chemically
inactive, then their pair distribution in space is given by the
equation:14-16,7

and the total ionization quantum yield is

In fact, the ion pair may be separated by diffusion if it escapes
geminate recombination to the ground state allowed from the
singlet state and forbidden from the triplet one. Therefore, the
triplet-singlet conversion in RIPs with a ratek0 is a necessary
step that makes recombination possible and leads to an essential
decrease in the quantum yield of separated (survived) ions. The
process proceeds according to the kinetic scheme proposed in
ref 22 for the reaction of photoexcited Ru-trisbipyrigine (D)
with methylviologen (A) (Figure 1):

Previously the charge separation was studied in systems where
recombination is not spin forbidden because ionization proceeds
from the excited singlet state.4 Therefore, in the originalunified
theory, we operated with only the pair distribution function of
ions,m(r,t), which describes their accumulation, resulting from
ionization, and recombination with a rateWR(r).7,14-16 Here
we should use instead of a single distribution at least two of
them: one for triplet RIPs,m(r,t), and another for a singlet one,
s(r,t). The former is pumped by ionization while recombination
is possible only in the latter. Taking into account the spin
conversion with the position independent ratek0, we can write
a system of differential equations for the RIP distribution
functions:

whereD̃ is an encounter diffusion coefficients for RIPs, different
from that for reactants (D), and rc ) e2/εkBT is the Onsager
radius of the Coulomb well. The initial and boundary conditions
for both distributions are the same:

The total survival probability of the ionized products is

The solution of eqs 1.7 may be obtained in the following
form:

We need onlypT andpSwhich are the Green functions for triplet
and singlet RIPs originating from an initially excited triplet state
because another pair,p′T andp′S, are the similar functions but
for RIPs produced from a singlet excitation. From eqs 1.9 and
1.10 one can easily obtain

Here the total charge distribution in RIP,

is composed of triplet and singlet components which yield the

3D* + A f 3 [D* ‚‚‚A] w3 [D+‚‚‚A-] (1.1)
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Figure 1. The reaction scheme for the forward and backward electron
transfer (with contact rateskfet andkbet≡ kr, correspondingly) assisted
by the spin conversion with a ratekTS≡ k0 that suppresses the ion pair
separation in either the triplet or singlet state.
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homogeneous differential equations

with the corresponding initial and reflecting boundary condi-
tions:

The charge photoseparation quantum yieldφ ) P(∞) resulting
from eqs 1.11 and 1.4

is actually a product of the total ionization quantum yieldψ
given in eq 1.5 and the charge separation quantum yieldæ(r)
averaged over initial distribution of ions,f0(r):

where

is the charge separation quantum yield of ions initially separated
by distancer′ and

is a normalized distribution of these distances in RIPs created
by binary photoionization.
The main difficulties encountered in solving these equations

result from the complex space dependence of the recombination
rate WR(r). Even in the simplest case of a single-channel
reaction the forward and backward electron transfer rates are
given by the famous Marcus formulas:

where∆GI(r) and∆GR(r) are the free energies for ionization
and recombination,λ(r) is the reorganization energy of a
classical (low-frequency) assisting mode. In reality, there may
be one or more quantum modes that should be also taken into
account.23,24 Their influence on the shape of the rates and the
charge-separation quantum yields was recently studied in ref
25, but here we have restricted ourselves to the simplest case.
For the sake of simplicity we have already assumed that the
interparticle interaction is spherically isotropic. This is not
always the case,26 but in low-viscosity solvents the chemical
anisotropy is very efficiently averaged by rotation and numerous
recontacts,27 so one may take

as exchange interaction matrix elements for the forward and
backward charge transfer.
Equation 1.16 separates the whole problem into two inde-

pendent parts: calculation of the initial distributionf0(r) by
means of encounter theory with a givenWI(r) and calculation
of the charge separation yield from a particular initial distance,
æ(r), at the given recombination rateWR(r). The former part
is essentially non-contact while the latter may be significantly
simplified if WR * 0 only atr - σ , σ, that is, in a thin layer
adjacent to the contact.

III. Recombination in the Contact Approximation

If the back electron transfer occurs in the normal region,
where|∆GR| < λ, then the distance dependence of the recom-
bination rate may be considered as exponential and sharp:12,13

At higher exothermicity the contact transfer becomes inverted
and the recombination layer takes a bell shape and moves out
of contact.12,13 However, the shift of the reaction layer from
the contact is smaller if the ionization is a multichannel transfer
assisted by the high-frequency quantum mode.28 Thus, for low
exothermal and/or multichannel back electron transfer the
recombination may be considered as contact and characterized
by a single parameter

which is actually a kinetic rate constant. Using this parameter
one can omit the last term in eq 1.13b, but account for
recombination through the radiation boundary condition different
from that given in eq 1.14:

Equations 1.13 may be now rewritten for functionsps andp as
follows:

with the following initial and boundary conditions forp,

The solution of eq 2.3a may be presented in the following
form:

where the Green function yields the free diffusion equation
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with the same boundary conditions as in eq 2.2 but with a
different initial one,

Making the Laplace transformation of eq 2.5 we have

In contact approximation eq 2.3b has a well-known solution6

whose the Laplace transform may be presented as follows:

whereG0 also yields the free diffusion eq 2.6 but with reflecting
boundary condition,

After integration overr we obtain from eq 2.8

and

After substitution of eq 2.8 into eq 2.7 the latter becomes an
algebraic equation forp̃S(σ,r0,s) at r ) σ. The solution of the
equation is the following:

Substituting this result into eq 2.11 we find

Now we can again make use of the contact approximation
which relatesG andG0 in the same way asp̃ andG̃0 in eq 2.8:

The solution of this equation atr ) σ is the following:

Using this result ats ) 4k0 in eq 2.11 we obtain:

It is clear that

as well as

Inserting these results into eq 2.15 we obtain finally:

Let us analyze the limiting case when the mixing of the spin
states is so fast that one can expect the restoration of the results
that were obtained neglecting the spin states. This is actually
true but with minor correction. For largek0 the quantity

may be neglected at anyr0 > σ. Thus, for an infinitely fast
spin conversion we obtain

This is the lower limit for the charge separation quantum yield,
and the recombination quantum yield,

is exactly the same as in the theory ignoring the spin states of
RIPs (see eq 5.7 in refs 5 and 6. The only difference is that an
effective reaction constant in eqs 2.17,x ) kr/4, is one-fourth
as much, because of the equilibrium weight of the only reactive
(singlet) state in the system.
Let us present the quantum yield as it was done in refs 7 and

8:

where

and

is a single parameter of the problem accounting for the contact
recombination. An “exponential model” implies that RIPs are
created only at contact,4 at r0 ) σ, so that (q ) 1) andZ(σ) ≡
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z) const does not depend on diffusion (viscosity of the solvent).
In fact, the starting distance may be much larger especially for
diffusion controlled or inverted ionization. Therefore

does not depend on diffusion only in the low viscosity limit
attributed in ref 7 to “kinetic controlled” geminate recombina-
tion. At higher viscosities the recombination is controlled by
diffusion that delivers ions to the contact and thereforeZ is
proportional toD̃. In general,Z increases withD̃ approaching
the kinetic limit,Z) qz) const, from below.7 This theoretical
prediction was in qualitative agreement with experimental data
obtained in ref 22.

IV. Charge Separation in Highly Polar Solutions

If ε f ∞ we may proceed further with the analytical
calculations because the important Green function for this
particular case is known (see eq 4.11 in ref 29):

where

By substituting eq 3.1 into eq 2.16 we obtain for highly polar
solutions:

In the limiting case of ultrafast conversion,k0 f ∞, the
separation quantum yield eq 2.17 is reproduced as well as it
presentation given by eqs 2.18 and 2.19 but with

At finite k0, we should first concentrate on the case when
RIPs are created not far from the contact. If their initial
separationr0 - σ is so small that the spin state does not
significantly change during delivery time from start to contact,
(r0 - σ)2/D̃, then

and the exponent in eq 3.2 may be expended iny. In the second-
order approximation we obtain:

where

If we present this result as in eq 2.18, then neglecting the small
correction iny2 we obtain:

where

These results do not depend onr0, though they hold only for
the RIPs not too far removed from the contact.
Since the expression 3.6 is invariant with respect to the

permutation ofkD andkr, the diffusional dependence ofZ plotted
against ln(kD/kr) (Figure 2a) is symmetrical at anyκ. Whenκ
. 1 there are three different regions:

In the intermediate diffusion region b we confirm the existence
of the kinetic plateauZ) zpredicted in the “exponential model”.
It is not affected by spin conversion as happens in both side

Z(r0) )

{ q
1- q

D̃ at (1- q)z. D̃ (diffusional recombination)

qz) const at (1- q)z, D̃ (kinetic recombination)

(2.21)

G̃0(σ,r0,s) ) G̃0(σ,r0,0)
e-(r0-σ)xs/D̃
1+ σ xs/D̃

(3.1)

G̃0(σ,r0,0)) 1
4πr0D̃

æ(r0) ) 1-

(kr/4)G̃0(σ,r0,0)[1- exp{-(r0 - σ)x4k0/D̃}/(1+ σx4k0/D̃)]
1+ (kr/4)G̃0(σ,σ,0)[1+ 3/(1+ σx4k0/D̃)]

(3.2)

z) kr/16πσ and q) σ/r0

y) x4k0(r0 - σ)2/D̃ , 1 (3.3)

æ )
1+ (kr/kD) + x+ y2(σ/2r0)(kr/4kD)

1+ (kr/kD) + x[1 + (kr/4kD)]
(3.4)

Figure 2. Diffusional dependence ofZ for (a) contact,r0 ) σ ) 5 Å,
and (b) near-contact RIPs,r0 - σ ) 1 Å, at different rates of spin
conversion characterized by parameterκ ) 10-3, 10-2, 0.1, 1, 10, 102,
and 103. Dashed lines: remote transfer with a rateWR(r) ) Wr exp-
[-2(r - σ)/l] (Wr ) 5 ns-1, l ) 0.7 Å). Solid lines: contact
approximation withkr ) fWR(r) d3r ) 628 Å3/ns.

kD ) 4πσD̃, x) x4k0σ2/D̃< or > 1, y)
r0-σ

σ
x, 1

(3.5)

Z) z
xkrκkD

kr + kD + xkrκkD
(3.6)

κ )
16πσ3k0

kr

Z ) {zxκ(kDkr ) ) 1
2xk0σ2D̃ at xkD/kr , 1/κ (a)

at 1/κ , xkD/kr , κ (b)

zxκ(krkD) )
kr
8πxk0/D̃ at κ , xkD/kr (c)

(3.7)
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regions where recombination increases withk0. If the rate of
conversion decreases to such an extent that inequality 3.6 is
inverted, the side regions are butted together, expelling the
kinetic plateau.
It is remarkable that diffusion accelerates the process in region

a and decelerates it in region c. This effect may be understood
if one takes into account that the efficiency of the spin
conversion is determined by the productk0the, wherethe is the
average “survival time” of a pair before ions either recombine
or are separated. For RIPs born in contact this time was shown
to increase untilkD < kr and to decrease atkD > kr:6

The results given in eq 3.7 for regions a and c may be presented
by the common formula,

though in region aZ increases while in region c it decreases
with diffusion. Since both the ascending and descending
branches ofZ(D̃) are spin controlled, the quantum yield in
regions a and c is rather sensitive to the variation ofk0 but not
as much in between, within the kinetic plateau of region b. The
latter is wider the higher isκ. Thus we come to the conclusion
thatk0 has its greatest impact on the charge recombination ifκ

, 1.
Moreover, when

the kinetic region b disappears and the recombination is limited
everywhere by the time of the spin conversion. In this case eq
3.9 holds at any speed of diffusion reaching the maximum value

The parabolic dependence 3.8 as well as the symmetrical
result 3.6 are peculiar only for RIPs started from the closest
approach distancer0 ) σ. At any nonzero initial ion separation
r0 - σ, the symmetry ofZ(D̃) dependence is lost. The ascending
branches of the curves shown in Figure 2b approach each other
and even merge, while their descending branches are pushed
apart. Even more dramatic changes occur if the theory of remote
electron transfer (section II) is used instead of contact ap-
proximation developed in section III. For the relatively fast
diffusion the contact approximation is well confirmed but the
difference increases and becomes qualitative asD̃ f 0.
Returning to contact approximation let us now focus our

attention on so distant a start or so slow a diffusion that the
inequality 3.3 is inverted. The essentially different result follows
from eq 3.4 fory . 1:

For the fast spin conversion (x . 1) we confirm here all the
results obtained for infinitely highk0 in eqs 2.17-2.21.
However, when the conversion is slower (x , 1 , y), the

equilibration of spin states during the encounter timeσ2/D̃ is
unattainable though it has been completed during much longer
delivery time (r0 - σ)2/D̃. Therefore the quantum yield of
recombination is 4 times smaller then in the case when the spin
states were neglected.
This difference can only be seen when the recombination is

under diffusional control:

In the kinetic control limit (kr , kD) the separation quantum
yield is not affected by the spin conversion and corresponding

while for diffusion controled recombination (kr . kD) this
quantity is approximately linear in the slow and fast conversion
limits though the slopes are different:

The spin effect in diffusional recombination comes to the
light as the bend of a quasi-linearZ(kD) dependence nearkD/kr
) κ. This region is attainable for distant starts,r0 > 2σ, when
κ , 1 (Figure 3a), but the smooth bend is not seen in a log-
log plot. The slopes of ascending branches of the curves are

the ) 1.6
4πσ3kD

(kr + kD)
2

(3.8)

Z) zx2.5k0the (3.9)

κ , 1, that is kr . 16πσ3k0

Zmax) zx4πk0σ
3

kr
)xk0krσ

64π
at kD ) kr (3.10)

æ(r0) ) 1-
kr
4kD(σ

r0) 1+ x
1+ kr/kD + x(1+ kr/4kD)

)

{1- R0(r0,kr/4) atx. 1
1- 1/4R0(r0,kr) atx, 1

(3.11)

Figure 3. The same as in Figure 2 but for different initial separations
(from bottom to top: r0/σ m= 8, 9, 2, 1.1, 1.01, 1) at (a) slow spin-
conversion and (b) fast spin conversion (κ ) 103).
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smaller the larger are initial separations, but at faster diffusion,
matching the requirement (eq 3.3), the difference between distant
starts and start from contact disappears. In fact, all descending
branches of the curves shown on Figure 3 stick together at so
fast diffusion. In the case ofκ . 1 this happens later and even
after the kinetic plateau (Z) (σ/r0)z) is over (Figure 3b). Only
then (atkD/kr > κ . 1) the recombination is coming under
conversion control and slows down with diffusion. The
transition from diffusion to kinetic control (from ascending
branch to plateau) occurs much earlier, atkD/kr ) (r0 - σ)/4r0.
Thus, one should look for the caseκ , 1 to find the spin

effects at slow and moderate diffusion. The corresponding
charge separation quantum yield, eq 3.12, depends on the spin
conversion only in the case of diffusion-controlled geminate
recombination,kr . kD. There is also a strong dependence on
the initial charge separationr0 so thatæ(r0) should be averaged
over the distributionf0(r0) as indicated in eq 1.16. Fortunately,
in the diffusion control limit

where

At slow diffusion not only recombination but also ionization
may be under diffusion control. In this case the distribution of
initial distances has a bell shape with the maximum shifted from
the contact,15 so that re > σ. After averaging with this
distribution the correspondingZ ) 1/æj - 1 may be obtained
from eq 3.14 asZ(re). Takingre ) 15Å at 12 Å we can hardly
see the transition from slow to fast conversion limits in log-
log plots (Figure 4a), but in conventional coordinates the
curvature ofZ(D̃) dependence is clearly seen (Figure 4b).
Previously we studied the same dependence ignoring the spin
states7 and came to the conclusion that it should be strictly linear
as in eq 2.21. The experimental data taken from ref 22 roughly
confirmed this conclusion except that there was a violation of
linearity at the lowest diffusion available.7 This is qualitatively
the same curvature that we see now in Figure 4b.
If this is the case then an essential decrease of the ion

separation quantum yieldæj (k0) with k0 should be seen in the
transition region. This is what we see in Figure 5. If the rate
of the spin conversion increases with the magnetic field the
separation quantum yield must decrease with the field strength
B as it was obtained experimentally in refs 30 and 31. For the
quantitative description of the magnetic field effect one should
know not only thek0(B) dependence but the distribution of initial
interion distancesf0(r) as well. The latter should be used to
find the true value ofre or to averageæ(r0) in a general way.
One need more information about reacting system to deter-

mine the shape off0(r). In polar solutions it depends essentially
on two factors which are the shape and location of the ionization
layer given byWI(r) and the speed of diffusion. The latter
prescribes the ionization to be either diffusional or kinetic. We
may assume that

when ionization is normal (at|∆GI| < λ). Even in this case,
which is the more favorable for contact creation of RIPS,f0(r)
∝ WI(r) is also exponential only in the fast diffusion limit when
ionization is under kinetic control. In the limit of slow diffusion,

the initial distribution of interion distances is neither exponential
nor contactual but has the maximum shifted to ionization radius
Rs > σ (Figure 6a).15 In Figure 6b the averaged yieldsæj
calculated with these distributions (dashed lines) are compared
with those, obtained for the contact startæ(σ) (dashed-dotted
lines). In the case of kinetic controlled ionization (K) they
coincide practically everywhere. For diffusional ionization, (D)

æj ) 1- 〈 σ
4r0〉 1+ x

1+ x/4
) æ(re) (3.15)

re ) 〈1r0〉
-1

) [∫0∞f0(r0)4πr0dr0]
-1

WI(r) ) Wi exp[-2(r - σ)/L] (3.16)

Figure 4. Diffusional dependence ofZ(re) in logarithmic (a) and usual
(b) coordinates atre ) 15 Å, σ ) 12 Å, andk0 ) 17.4 ns-1. Upper and
lower dashed lines are linear asymptotics corresponding to the opposite
limits of the fast and slow spin conversion (4k0σ2 . D̃ and 4k0σ2 ,
D̃).

Figure 5. The drop in the averaged charge-separation quantum yield
with the rate of spin conversion, accelerated by magnetic field.
Parametersre andσ are the same as in Figure 4 whileD ) 5 × 10-5

cm2/s.
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they are the same as long as the spin conversion is slow and
takes effect after the difference of initial separations has been
washed out by diffusion. At faster conversion the curves differ
essentially. Even more essential is the difference between
quantum yields calculated with the distant dependent rate of
recombinationWR(r) (solid lines) and obtained in the contact
approximation. The latter is always higher if the initial
distributions are the same, but the recombination of RIPs started
from contact is stronger at fast spin conversion and their
separation quantum yield is lower than it is in reality.
Such a high sensitivity to a small variation of initial interion

distances is a consequence of a very sharp space dependence
of the recombination rateWR(r) determined by electron tun-
neling. The origin of the effect is actually the same as in
scanning tunneling microscopy. Therefore, the contact simpli-
fication of the theory is always a rough approximation. Though
useful for a qualitative discrimination and semiquantitative
description of diffusional and magnetic field effects, it should
be replaced by a general theory of remote transfer when applied
to any particular experimental data.

V. Discussion

Our last results obtained for the exponential rates of recom-
bination and ionization, eqs 2.1 and 3.16, are related to so called
NN case when both transfer processes occur in the normal
region: ∆GI ≈ ∆GR < λ (see Figure 2 in ref 7). This case is
only reliable if the energy of the excited tripletε0 < 2λ.

Otherwise one should discriminate between the NI case (normal
ionization-inverted recombination) and the IN case (inverted
ionization-normal recombination).7,16 In the former case the
spherical reaction layer for ionization is adjacent to the contact
but for recombination it is remote, while in the latter case they
exchange the positions. Atε0 > 2λ there is also the place for
the II case where both reaction layers are remote.33

The contact approximation used in sections III and IV is
applicable only to the NN and IN cases, assuming that the
recombination layer is not only contact but also narrow. If in
addition the ionization is under kinetic control, then the initial
RIPs distribution is contact andæj ≈ æ(σ). On the contrary,
for diffusional ionization the real averaging over initial separa-
tions of ions is inevitable and the shape of such a distribution
is of great importance. An increase in the spin conversion rate
facilitates recombination unless it is under kinetic control.
In practice the NN and IN cases compatible with the contact

approximation of recombination are less common than the
opposite NI or II cases. In these cases the radical-ions may be
created deeply inside the remote recombination layer. When
spin states of these radicals are ignored not their initial location
plays the role but only the thickness of the recombination layer
and the residence time in there.8 This result should now be
revised numerically or within the rectangular model of the
reaction layer used in ref 8. When the spin conversion is
necessary for recombination of ions crossing the reaction layer
from inside, the number of singlet RIPs produced within the
sphere depends on the time spent there.
The main restriction of the present approach is a commonly

used assumption that the spin-conversion may be described as
stochastic process with a given ratek0.9 However, in systems
studied in refs 30 and 31 the spin-orbital interaction is so strong
that one should consider the dynamical spin conversion assisted
by molecular rotation instead of usingk0 estimated with a
perturbation theory (“golden rule”). As far as we know such a
study has been started already.34 We also see no difficulties in
generalizing the theory in such a way as was done in the contact
approximation in refs 10 and 11.
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