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We present the unified theory of binary triplet state ionization followed by spin conversion to a singlet state
of radical ion pair (RIP) and subsequent spin-allowed recombination which hinders the charge separation.
An analytical theory of RIPs recombination in contact approximation is developed. At slow diffusion the
previous results which ignored the spin states have been confirmed, though the effective recombination constant
is weighted with an equilibrium share of singlet stdfg, At faster diffusion, the spin conversion becomes

a limiting stage if not completed during encounter and/or delivery time (from the initial distance to contact).
The analytical and numerical study of charge separation in polar solutions shows that initial interion distance
is an important factor in determining the quantum yield dependence on encounter diffusion and spin conversion
rates. At distant starts the diffusional control of geminate recombination gives way to kinetic control and/or
to spin conversion control as diffusion increases. At any diffusion the quantum yield of RIPs separation
decreases with the magnetic field if the latter accelerates the spin conversion.

I. Introduction geminate recombination is under kinetic control but linear in
diffusion when the limiting stage of the process is a delivery of
ions from starting point to contaé€ Contact approximation
was also successfully applied to magnetic field effects in
geminate recombinatiohl® The same was done in a more
sophisticated contact theory known as the “Green function

A discovery of magnetic field effects in liquid phase
chemistry marked the beginning of the active ESR and NMR
study of photochemical radical reactions, which has become
an independent line of study known as “spin chemistnysing
very sophisticated methods of magnetic spectroscopy to solve . e ) . .
the spin part of the problem, most if not all of the authors methgld similar to the *kinematic™ or “closure” approxima-
simplified as much as possible the kinematic aspect of RIPs tions: ) ) o
evolution. This part was usually considered in the frame of The common demerit of all contact theories of recombination
the so called “exponential model,” which attributes the Poisson is a crude simplification and an incorrect location of the reaction
distribution to the lifetimes of the radical-ion pairs ignoring their Zone moving aside with increasing exothermicity of recombina-
initial distribution on interparticle distances and the diffusional tion.*>** Even more important is an arbitrariness in choosing

kinematics of the motioA. ro as the initial condition for the geminate reaction. In fact,
The exponential model was W|de|y accepted in photochem_ the initial distribution overrg is created in the course of
istry of electron transfer reactions in solutic¥fs.Using optical ionization and nobody is free to choose it voluntarily. Only by

registration of excited reactants and/or their charged products,considering ionization and the subsequent recombination as a
researchers were able to measure the quantum y|e|d of Separateuniﬁed process one can eliminate the arbitrariness of the initial
ions ignoring their spin states. Assuming that all ions (or distribution of interion distances. Such a “unified theory” of
radical-ions) (i) are produced at contact distancgii) and photoionization followed by geminate recombination appeared
recombine only in contact, the exponential model leads to the Only recently* and was very successful in calculating the real

simplest expression for the charge separation quantum yield initial distributions®, the separation quantum yielti¥and even
the whole kinetics of the proced5taking into account the

_ 1 remote character of electron transfer. Recently the unified
Y=1+2D theory was justified using a more fundamental and better
established convolution formalism of chemical kinetics known
whereD is an encounter diffusion coefficient ads propor- as “integral encounter theory?®.
tional to the kinetic constant of charge recombinatikan Here we make an attempt to join the unified theory and spin
So the primitive approach has been replaced in a few chemistry using the simplest approach to the latter. Transitions
theoretical works by “contact approximatioh®. In this ap- between singlet and triplet states of the RIPs will be considered

proximation the recombination is still considered as a contact in balance approximatiohusing the rate of the singletriplet
reaction, but the initial separation of iongis left free and is  conversionky as a single parameter sensitive to the magnetic
used as a fitting parameter. It turns out that a simple parameterfield. We will present the general theory for remote forward
z should be substituted by functich proportional toz when and backward electron transfer (section Il) and its simplified
— . . version intended for contact recombination (section Ill). Both
. ‘L’Jvrﬁ{lz;‘;‘i?;}lgﬁgt‘gﬁzo‘c Science. of them will be used to calculate the charge separation quantum

5On leave from the Institute for Water and Environmental Problems, Yi€ld in polar solutions (section IV).  In contact approximation
656099 Barnaul, Russia. this problem will be solved analytically and allowed to specify
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an important parameter of the theory= ko/167ok;, which
discriminates between spin-controlled and kinetic controlled
recombination. Another parameterk,d¥D, determines the
diffusional and magnetic field dependence of the quantum yield
where recombination is under diffusional control. The differ-
ence between contact and remote starts will be analyzed an
the results compared with those averaged over the true distrib
tion of interion distances.

i
3F§u§‘+MV“'—> 3(Rud MV?)

Bkrs ’ ‘ kis

‘Ru§:+MV”<k— (Ru¥ MVY)

dFigure 1. The reaction scheme for the forward and backward electron
Utransfer (with contact ratdg.: andkye: = ki, correspondingly) assisted
by the spin conversion with a rakes = ko that suppresses the ion pair
separation in either the triplet or singlet state.
Il. Photoionization followed by Spin Conversion and
Remote Recombination Previously the charge separation was studied in systems where
recombination is not spin forbidden because ionization proceeds
from the excited singlet stafe Therefore, in the originainified
theory, we operated with only the pair distribution function of
ions, m(r,t), which describes their accumulation, resulting from
ionization, and recombination with a ratk(r).”1416 Here
we should use instead of a single distribution at least two of
them: one for triplet RIPsn(r,t), and another for a singlet one,
§(r,t). The former is pumped by ionization while recombination
is possible only in the latter. Taking into account the spin
conversion with the position independent rk§ewe can write

The irreversible charge transfer from an excited triplet of
donor €D*) to the acceptor of electron (A) is a usual mechanism
of energy quenching in liquid solutions:

3px +A—>3[D*"-A] =3 [DF---AT] (1.1)
In the binary approximation the quenching kinetics aftqulse
excitation is well described by the set of equations of “dif-
ferential encounter theory*%-21

N = —kl(t)cN—lN (1.22) a sy_stem of differential equations for the RIP distribution
Tp functions:
= 2 g [ ~lﬁZrc/ri—rC/r
k(t) = 4z [r* dr W,(r)n(r t) (1.2b) 5= —kom + 3ks + D5 e Te ™ m + W)
r
1.7a
%n = —W(r)n+ Dl2 grzgn (1.2c) (1.72)
r 2_ _ ~EQZrc/rifrc/r _
8ts—kom 3kys+ Dr2 o €75e s Wi(r)s (1.7b)

HereN(t) is a share of the excitations survived at titnalthough
they decay with a lifetimep and are quenched by acceptors
given in concentratioe with a “rate constantk(t). The latter
is expressed via the donor distribution around accepfqt)

whereD is an encounter diffusion coefficients for RIPs, different
from that for reactantsy), andr. = €ekgT is the Onsager

that changes with time due to ionization with the position
dependent rat#i(r) and encounter diffusion of reactants with
a coefficient D. The pair distribution should satisfy the

radius of the Coulomb well. The initial and boundary conditions
for both distributions are the same:

m(r,0) = &(r,0) =0,

following initial and boundary conditions:
ad —rdr _ —
§e m(r,t)|,—, =

) L& (1Y), =0 (18)
n(r,0)=1, gn(r,t)h:o =0 1.3)

The total survival probability of the ionized products is
If nothing happens to the charged products of the reaction
after ionization, as if they were immobile and chemically
inactive, then their pair distribution in space is given by the

equationt4-16.7

P(t) = c [ [m(r.t) + S(r,0)]4r? dr (1.9)

The solution of eqs 1.7 may be obtained in the following
form:

my(r) = Wi(r) [ n(r HN(t)alt (1.4)
m(r,t)| e (ol pr(r.rt—t) p'yrr.t)
and the total ionization quantum yield is s(rt) | ﬁ) f ps(r,r't = t) p'o(r,r t)
= c [ my(r)dr’dr (1.5) (W'(r')n(g ’t')N(t')) (1.10)

In fact, the ion pair may be separated by diffusion if it escapes e need onlypr andps which are the Green functions for triplet
geminate recombination to the ground state allowed from the and singlet RIPs originating from an |n|t|al'ly .eXCIted t(lplet state
singlet state and forbidden from the triplet one. Therefore, the Pecause another pajr;r andp's, are the similar functions but
triplet—singlet conversion in RIPs with a rakeis a necessary for RIPs produced_ from a_smglet excitation. From egs 1.9 and
step that makes recombination possible and leads to an essentiat-10 one can easily obtain
decrease in the quantum yield of separated (survived) ions. The ‘
process proceeds according to the kinetic scheme proposed in P(t) = ¢ [dr [d®r'Wi(r") [ p(r,r" t)n(r' t)N(t) dt (1.11)
ref 22 for the reaction of photoexcited Rtrisbipyrigine (D)
with methylviologen (A) (Figure 1): Here the total charge distribution in RIP,

D" +A rrt—t)=pdrrt—t)+pgrrt—t) (1.12
D"+ A < D% o] —m o] p( ) = pr( )+ ps( ) (1.12)

(1.6)
N 1[D-.-A]

is composed of triplet and singlet components which yield the
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homogeneous differential equations V() = Vief(rfo)/L and Ve(r) = Vre—(r—o)/l

1.20
tpT = —kgp; + 3kyps + D—2 (,;9 rze“’r ’“”pT (1.13a) (1.20)
r as exchange interaction matrix elements for the forward and

backward charge transfer.
1 a 2 rc/r8 —rr

atps kopr — 3KoPs + D Wi(r)ps Equation 1.16 separates the whole problem into two inde-
pendent parts: calculation of the initial distributidsfr) by
(1.13b) means of encounter theory with a give¥(r) and calculation

of the charge separation yield from a particular initial distance,

with the corresponding initial and reflecting boundary condi- ¢(r), at the given recombination raWk(r). The former part

tions: is essentially non-contact while the latter may be significantly
S —r') simplified if Wg = 0 only atr — 0 < g, that is, in a thin layer
p.(r.r',0)= T ps(0) =0, adjacent to the contact.
Tr

—rclr =0 (1.14) [ll. Recombination in the Contact Approximation

()] =y = ()

If the back electron transfer occurs in the normal region,

The charge photoseparation quantum yigle P(e) resulting ~ Where|AGg| < 4, then the distance dependence of the recom-
from egs 1.11 and 1.4 bination rate may be considered as exponential and $Ratp:

b= cfd3rfd3r' p(r.r o)my(r) = 9@ (1.15) Wi(r) =W, exp[-2(r — o)/1] (2.1)
is actually a product of the total ionization quantum yigid
given in eq 1.5 and the charge separation quantum yiéiy
averaged over initial distribution of ion(r):

At higher exothermicity the contact transfer becomes inverted
and the recombination layer takes a bell shape and moves out
of contact!213 However, the shift of the reaction layer from
the contact is smaller if the ionization is a multichannel transfer
— NE (Y A3y assisted by the high-frequency quantum m&ddhus, for low
@ f(p(r () dr (1.16) exothermal and/or multichannel back electron transfer the
where recombination may be considered as contact and characterized
by a single parameter
o(") = [p(r,r' o) dmr? dr (1.17) -
Js k = [ Wg(r)4zr® dr

is the charge separation quantum yield of ions initially separated

by distancer’ and which is actually a kinetic rate constant. Using this parameter
one can omit the last term in eq 1.13b, but account for
my(r') recombination through the radiation boundary condition different
o= (1.18) from that given in eq 1.14:
S my(r)4ar? dr
< o[0Ps T¢
is a normalized distribution of these distances in RIPs created ps(0)=0, MDOZ(? + Fps)h:a =kpgot) (2.2)

by binary photoionization.

The main difficulties encountered in solving these equations gquations 1.13 may be now rewritten for functigrsandp as
result from the complex space dependence of the recombinatiorkg|ows:
rate Wr(r). Even in the simplest case of a single-channel

reaction the forward and backward electron transfer rates are a _x10> rc/r r
given by the famous Marcus formulas: 3tp5 + 4koPs = Drz arr € Ps+kp (2:32)
(AGI + )“)2 d =19 2_rdr a —rr
=\ - ~p=D=5_re’_—e 2.3b
W(r) = V: /AkB p[ kT p p (2.3b)

with the following initial and boundary conditions fqx,
(1.19)

B (AGg + 1)
=iy

where AG(r) and AGg(r) are the free energies for ionization
and recombinationA(r) is the reorganization energy of a
classical (low-frequency) assisting mode. In reality, there may
be one or more quantum modes that should be also taken into
account324 Their influence on the shape of the rates and the 3, ot ' =) gt o1y
charge-separation quantum yields was recently studied in ref Ps(f:fot) = ko f r [(G(r,r" t = t)e p(r',rot’) dt

25, but here we have restricted ourselves to the simplest case. (2.5)
For the sake of simplicity we have already assumed that the

interparticle interaction is spherically isotropic. This is not where the Green function yields the free diffusion equation
always the cas®, but in low-viscosity solvents the chemical

anisotropy is very efficiently averaged by rotation and numerous —G b= 19 r2 rc/'
recontactg/ so one may take ot r? 8r 3r

or—r 9
D(O)ZW, 4nDo (p+ zp)lr - = kpg(o,t) (2.4)

The solution of eq 2.3a may be presented in the following
for

e "'G (2.6)
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with the same boundary conditions as in eq 2.2 but with
different initial one,

a

ofr—r = c
G(0)= %, 4;1002(% + :—Ze)h_o = kG(o/1)

Making the Laplace transformation of eq 2.5 we have

Ps(r.re:S) = ko [ G(r.r',s + 4k)p(r' 18 A’ (2.7)
In contact approximation eq 2.3b has a well-known solition
whose the Laplace transform may be presented as follows:
B(rrS) = Golr o) — kGy(r,0.90(0.109)  (2.8)
whereGy also yields the free diffusion eq 2.6 but with reflecting
boundary condition,

ofr—r aG
Go(r,r010) = (—20), (_0

r
p= +r—geo)|r:(,=o (2.9)

Ar

After integration over we obtain from eq 2.8

Ppres) = [Brre9d = % - %f)s(o,ro,s) (2.10)
and
@(rg) = limsfros) = 1 — kpg(orp0)  (2.11)

After substitution of eq 2.8 into eq 2.7 the latter becomes an
algebraic equation fgds(o,ro,s) atr = ¢. The solution of the
equation is the following:

ko [ Glonr" s+ Ak)Gy(r' rg8) dr'
1+ kk [Glor' s+ 4k)Gy(r'0,9) &’

Ps(o.ro,S) =

Substituting this result into eq 2.11 we find

ko G(o.r" k) Gyfr' 1 ,0) '
1+ kok, [G(or" k) Gy(r",0,0)

Now we can again make use of the contact approximation
which relatesG andGy in the same way a8 andGy in eq 2.8:

prg)=1- (2.12)

G(r,r',9) = Gy(r,r',s) — kGy(r,0,9G(o,r',9 (2.13)

The solution of this equation at= o is the following:

G Color"9) 2.14
ry)=——-— .
@S = i &g (2.14)
Using this result as = 4kg in eq 2.11 we obtain:
p(rg) =1—
kKo J Golo,r" 4kp)Gy(r" 1 ,0) &’
(2.15)

1+ kGy(0,0,4ky) + ke, [ G(or',4k)Gy(r",0,0) o’

It is clear that
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JGlor" Akp)Gy(r' 1,0) dr' =
[dt [idre 4 [Gyar t — 1)Gr o t) o' =
Go(G,rO,O) - GO(Ovr0:4kO)
4Ky

t

[ Gylorot)e e dt [ dtr =

as well as
Gy(0,0,0) — Gy(0,0,4k,)
4Ky

Inserting these results into eq 2.15 we obtain finally:

(1/4)kr[éo(a!r010) - Go(‘71r074k0)]

1+ (%1)k Gy(0,0.4ky) + (1,)k Gy(0,0,0)
(2.16)

JGylor A Gy(r',0,0) r' =

p(rg) =1—

Let us analyze the limiting case when the mixing of the spin
states is so fast that one can expect the restoration of the results
that were obtained neglecting the spin states. This is actually
true but with minor correction. For larde the quantity

Go(0r ko) = /;Jwe_%teo(g Fot) dt ~
Go(0.rg,0) _ 0(o =9
4Ky 16k

may be neglected at any > ¢. Thus, for an infinitely fast
spin conversion we obtain

(k/4)Go(0,r,0) _
L T kG0 1 Rl

@(rg) = (2.17)

This is the lower limit for the charge separation quantum yield,
and the recombination quantum yield,

. xGy(0.r,0)

14 xGy(0,0,0) (2.172)

Ro(ro:X)

is exactly the same as in the theory ignoring the spin states of
RIPs (see eq 5.7 inrefs 5 and 6. The only difference is that an
effective reaction constant in eqs 2.X7= k/4, is one-fourth
as much, because of the equilibrium weight of the only reactive
(singlet) state in the system.

Let us present the quantum yield as it was done in refs 7 and

8:
_ 1
() =T77/5 (2.18)
where
20 =1 Z(fz_ o5 9= i - zrr;;osl (2.19)
and

(k41— e "]
S Wit —e 71

o (2.20)

C

is a single parameter of the problem accounting for the contact
recombination. An “exponential model” implies that RIPs are
created only at contaétatro = o, so that = 1) andZ(o) =
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z= const does not depend on diffusion (viscosity of the solvent).
In fact, the starting distance may be much larger especially for
diffusion controlled or inverted ionization. Therefore

Zry) =
ﬁf) at (1 — g)z> D (diffusional recombination)
gz= const at (1 — g)z< D (kinetic recombination)

(2.21)

does not depend on diffusion only in the low viscosity limit
attributed in ref 7 to “kinetic controlled” geminate recombina-
tion. At higher viscosities the recombination is controlled by
diffusion that delivers ions to the contact and therefdres
proportional toD. In generalZ increases witld approaching
the kinetic limit,Z = qz= const, from below. This theoretical
prediction was in qualitative agreement with experimental data
obtained in ref 22.

IV. Charge Separation in Highly Polar Solutions

If ¢ — o we may proceed further with the analytical
calculations because the important Green function for this
particular case is known (see eq 4.11 in ref 29):

D)

Gy(0,r0,9) = Gy(0,ry,0 =
0( 0) O( 0 )1+O’\/g_D

(3.1)

where

GO(G,rO,O) =

1
4gtr D

By substituting eq 3.1 into eq 2.16 we obtain for highly polar
solutions:

p(rg) =1—
(k/4)Gy(0,r,0)[1 — exp{ —(ry, — 0)y/4ky/D}/(1 + 0,/4kyD)]
1+ (k/4)Gy(0,0,0)[1 + 3/(1+ 04/4k/D)]

(3.2)

In the limiting case of ultrafast conversioky — o, the

separation quantum vyield eq 2.17 is reproduced as well as it

presentation given by eqs 2.18 and 2.19 but with

z=k/16no and q=olr,

At finite kg, we should first concentrate on the case when
RIPs are created not far from the contact. If their initial
separationrp — o is so small that the spin state does not
significantly change during delivery time from start to contact,

(ro — 0)4D, then

y = \/4ky(ro— 0)ID < 1

and the exponent in eq 3.2 may be expendad iln the second-
order approximation we obtain:

B 1+ (k/kp) +x+ y2(0/2r0)(kr/4kD)
T 1 (kfkp) X[+ (K /Akp)]

(3.3)

(3.4)

where
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Figure 2. Diffusional dependence d for (a) contactfo =0 =5 A,
and (b) near-contact RIPs; — o = 1 A, at different rates of spin
conversion characterized by parameter 1073, 1072, 0.1, 1, 10, 18
and 16. Dashed lines: remote transfer with a rate(r) = W exp-
[=2(r — o)]] (W, = 5 ns?, | 0.7 A). Solid lines: contact
approximation withk, = fWk(r) d® = 628 A¥/ns.

- ~ ra—0
ko = 410D, x=./4ko¥D< or >1, y= OTX <1
(3.5)

If we present this result as in eq 2.18, then neglecting the small
correction iny? we obtain:

Jiicks

Z=7z (3.6)
k + ko + ko
where
_ 16mo’k,
Tk

These results do not depend oy though they hold only for
the RIPs not too far removed from the contact.

Since the expression 3.6 is invariant with respect to the
permutation okp andk., the diffusional dependence Bplotted
against Inkp/k,) (Figure 2a) is symmetrical at any Whenk
> 1 there are three different regions:

z, /K(%) = %«/koozlj at kylk, < 1k (@)

Z= at Uk < /kplk <« (b)
2 (kED) — S B ate= ik ©
(3.7)

In the intermediate diffusion region b we confirm the existence
of the kinetic platead = z predicted in the “exponential model”.
It is not affected by spin conversion as happens in both side
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regions where recombination increases wih If the rate of
conversion decreases to such an extent that inequality 3.6 is
inverted, the side regions are butted together, expelling the
kinetic plateau.

It is remarkable that diffusion accelerates the process in region
a and decelerates it in region c. This effect may be understood§ 03 |
if one takes into account that the efficiency of the spin
conversion is determined by the prodll@fe, wheret, is the
average “survival time” of a pair before ions either recombine

or are separated. For RIPs born in contact this time was shown ;. | K 1
to increase untikp < k; and to decrease &b > k8 , —— : : i : : i - —
10 r
- 4ok, b
te=1.6—- (3.8)
(k + ko)

The results given in eq 3.7 for regions a and ¢ may be presentedN ot 1

by the common formula,

Z=12,/2.5t, (3.9)

02 L 1 K
; . . . ‘ ‘ ‘ ‘ ‘

though in region & increases while in region c it decreases B L T A

with diffusion. Since both the ascending and descending

branches ofz(D) are spin controlled, the quantum yield in kp/k,

regions a and c is rather sensitive to the variatioRodfut not Figure 3. The same as in Figure 2 but for different initial separations

as much in between, within the kinetic plateau of region b. The (from bottom to top:ro/c m= 8, 9, 2, 1.1, 1.01, 1) at (a) slow spin-
latter is wider the higher i8. Thus we come to the conclusion  conversion and (b) fast spin conversians 10°).

thatkg has its greatest impact on the charge recombinatien if
< 1.

Moreover, when

equilibration of spin states during the encounter tiodt is

unattainable though it has been completed during much longer

delivery time (o — 0)¥D. Therefore the quantum vyield of

k<1, thatis k > 1610k, recombination is 4 times smaller then in the case when the spin
states were neglected.

the kinetic region b disappears and the recombination is limited ~ This difference can on.ly be seen when the recombination is
everywhere by the time of the spin conversion. In this case eq Under diffusional control:
3.9 holds at any speed of diffusion reaching the maximum value

K
1-< r at k, << kp

yd o 4kp o
/ 477:k003 / kokfo' (r0) N o Lex 1- & atx>1 (3.12)
Zmax: z kr = 647 at kD = kr (3.10) 1_4_fo Tixa 1_%% ax<1 at k, > kp

The parabolic dependence 3.8 as well as the symmetrical
result 3.6 are peculiar only for RIPs started from the closest
approach distanag = 0. At any nonzero initial ion separation
ro — o, the symmetry oF(D) dependence is lost. The ascending o
branches of the curves shown in Figure 2b approach each other Z(ry) = Zr_ = const (3.13)
and even merge, while their descending branches are pushed 0
apart. Even more dramatic changes occur if the theory of remote
electron transfer (section Il) is used instead of contact ap-

In the kinetic control limit k- < kp) the separation quantum
yield is not affected by the spin conversion and corresponding

while for diffusion controled recombinatiork(> kp) this
guantity is approximately linear in the slow and fast conversion

proximation developed in section Ill. For the relatively fast . - - .
diffusion the contact approximation is well confirmed but the limits though the slopes are different:
difference increases and becomes qualitativ® as 0. Z(r) =
Returning to contact approximation let us now focus our 0
attention on so distant a start or so slow a diffusion that the 75 4k00'2
inequality 3.3 is inverted. The essentially different result follows 4+ /4k002/f) o— O at 5) >1
from eq 3.4 fory > 1: oDlfry————=-0| = o?
1+ \/4k0?ID I 5 _ Mo
(r)=1- K (o 1+x — © 4ro—0D at—g- <1
PR =27 e\ T+ Kk + X(1 + k/dko)
L= Rirok/4) atx>1 (3.14)
1—1Rrok) atx<1 (3.11) The spin effect in diffusional recombination comes to the
light as the bend of a quasi-linetkp) dependence ne&p/k:
For the fast spin conversiox & 1) we confirm here all the = k. This region is attainable for distant stams,> 20, when
results obtained for infinitely highky, in eqs 2.172.21. k < 1 (Figure 3a), but the smooth bend is not seen in alog

However, when the conversion is slower € 1 < y), the log plot. The slopes of ascending branches of the curves are
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smaller the larger are initial separations, but at faster diffusion, 107
matching the requirement (eq 3.3), the difference between distant
starts and start from contact disappears. In fact, all descending
branches of the curves shown on Figure 3 stick together at so
fast diffusion. In the case af> 1 this happens later and even
after the kinetic plateaZ(= (o/ro)2) is over (Figure 3b). Only
then (atkp/k; > « > 1) the recombination is coming under
conversion control and slows down with diffusion. The
transition from diffusion to kinetic control (from ascending
branch to plateau) occurs much earlierkgk, = (ro — 0)/4ro.

Thus, one should look for the cage<x 1 to find the spin
effects at slow and moderate diffusion. The corresponding
charge separation quantum yield, eq 3.12, depends on the spin

Z,cmzls

conversion only in the case of diffusion-controlled geminate e e e ppe o
recombinationk; > kp. There is also a strong dependence on D,cm?/s
the initial charge separatiag so thaty(rg) should be averaged
over the distributioriy(rg) as indicated in eq 1.16. Fortunately, ax10” <
in the diffusion control limit ool i
_ 1+ x ost ]
p=1— H%O = () (3.15) -
2 0.6 q
where NE sl i
1 o [\i 0.4 7
fe= B‘ﬂ =[f; folrodaredrg oal 1
0 0.2r b
At slow diffusion not only recombination but also ionization oaf ' b
may be under diffusion control. In this case the distribution of o . . . . ‘ . . . .
initial distances has a bell shape with the maximum shifted from R S A e,
the contact® so thatr. > o. After averaging with this D,cm?/s

distribution the corresponding = 1/p — 1 may be obtained Figure 4. Diffusional dependence @&r.) in logarithmic (a) and usual
from eq 3.14 aZ(re). Takingre= 15A at 12 A we can hardly  (b) coordinates at. = 15 A, o = 12 A, andk, = 17.4 ns™. Upper and

see the transition from slow to fast conversion limits in-og lower dashed lines are linear asymptotics corresponding to the opposite
log plots (Figure 4a), but in conventional coordinates the limits of the fast and slow spin conversionkid? > D and 40® <
curvature ofZ(D) dependence is clearly seen (Figure 4b). D).
Previously we studied the same dependence ignoring the spin
stategand came to the conclusion that it should be strictly linear 0.52
asineq2.21. The experimental data taken from ref 22 roughly
confirmed this conclusion except that there was a violation of
linearity at the lowest diffusion available This is qualitatively

the same curvature that we see now in Figure 4b.

If this is the case then an essential decrease of the ion (4
separation quantum yielg(ko) with ko should be seen in the
transition region. This is what we see in Figure 5. If the rate 1S 0.4
of the spin conversion increases with the magnetic field the
separation quantum yield must decrease with the field strength
B as it was obtained experimentally in refs 30 and 31. For the
guantitative description of the magnetic field effect one should

05

0.48

0.42

know not only theky(B) dependence but the distribution of initial 0.38}

interion distancedy(r) as well. The latter should be used to

find the true value ofe or to averagep(ro) in a general way. 036 0 a0 a0 50 0 70 80 0 100
One need more information about reacting system to deter- ko, 1/ns

mlnt\?vthfe Sthape (I?]f‘f)(;) Intﬁ]o'ailso'unorzjsllt detpendfstﬁssien.tlaltly Figure 5. The drop in the averaged charge-separation quantum yield
on two factors which are the shape and localion ot th€ 10n1zalion iy, the rate of spin conversion, accelerated by magnetic field.

layer given byW(r) and the speed of diffusion. The latter parameters. ando are the same as in Figure 4 while= 5 x 10°5
prescribes the ionization to be either diffusional or kinetic. We cns.
may assume that
the initial distribution of interion distances is neither exponential
W(r) = W, exp[-2(r — o)/L] (3.16) nor contactual but has the maximum shifted to ionization radius
Rs > o (Figure 6a)> In Figure 6b the averaged yields
when ionization is normal (dAG|| < 1). Even in this case, calculated with these distributions (dashed lines) are compared
which is the more favorable for contact creation of RIRS) with those, obtained for the contact steo) (dashee-dotted
O Wi(r) is also exponential only in the fast diffusion limit when lines). In the case of kinetic controlled ionization (K) they
ionization is under kinetic control. In the limit of slow diffusion,  coincide practically everywhere. For diffusional ionization, (D)
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Otherwise one should discriminate between the NI case (normal
ionization—inverted recombination) and the IN case (inverted
ionization—normal recombination}1® In the former case the
spherical reaction layer for ionization is adjacent to the contact
but for recombination it is remote, while in the latter case they
exchange the positions. Ap > 21 there is also the place for
the Il case where both reaction layers are renidte.

The contact approximation used in sections Il and IV is
applicable only to the NN and IN cases, assuming that the
recombination layer is not only contact but also narrow. If in
addition the ionization is under kinetic control, then the initial
RIPs distribution is contact an@ ~ ¢(0). On the contrary,
for diffusional ionization the real averaging over initial separa-
tions of ions is inevitable and the shape of such a distribution
is of great importance. An increase in the spin conversion rate
facilitates recombination unless it is under kinetic control.

In practice the NN and IN cases compatible with the contact
approximation of recombination are less common than the
opposite NI or Il cases. In these cases the radical-ions may be
created deeply inside the remote recombination layer. When
spin states of these radicals are ignored not their initial location
plays the role but only the thickness of the recombination layer
and the residence time in theteThis result should now be
revised numerically or within the rectangular model of the
reaction layer used in ref 8. When the spin conversion is
necessary for recombination of ions crossing the reaction layer
from inside, the number of singlet RIPs produced within the
sphere depends on the time spent there.

The main restriction of the present approach is a commonly

Figure 6. Distributions of initial interion distances (a) and quantum used assumpt|on ’[hat the spin_conversion may be descnbed as
yields of their separation (b) in the case of kinetic ionization K= ; ; ; ;

ko/2) and diffusional ionization (D:k = 1(Pko). Dashed-dotted Szogh"’(‘js.“c pfmg%s’s "(;"ghl ":‘hg"’e.” rﬁ‘.‘f | .Hto""e‘t’.er’ In SySttemS
lines: contact creation and contact recombination of RIPs. Dashed S'U0I€d IN IE1S SU and € spior ltal interaction IS so strong
lines: contact recombination of RIPs with the given initial distribution that one should consider the dynamical spin conversion assisted

of interparticle distances. Solid lines: remote recombination of RIPs by molecular rotation instead of usirky estimated with a

with exponentialWx(r) = Wi(r) and the same initial distributic_m@_(D perturbation theory (“golden rule”). As far as we know such a
= 10°° cnPs, whileo, W, = W, andL = | are the same as in Figure  study has been started alreadyWe also see no difficulties in
2). generalizing the theory in such a way as was done in the contact

they are the same as long as the spin conversion is slow anaapproxmatlon in refs 10 and 11.

takes effect after the difference of initial separations has been
washed out by diffusion. At faster conversion the curves differ
essentially. Even more essential is the difference between (1) Buchachenko, A. L.; Sagdeev, R. Z.; Salikhov, K. Magnetic

; ; ; and Spin Effects in Chemical Reactiphguka: Novosibirsk, Russia, 1978.
guantum vyields calculated with the distant dependent rate of Salikhov, K. M. Molin, Yu. . Sagdeev. R. Z.: Buchachenko. ASpin

recombination\Wr(r) (solid lines) and obtained in the contact  polarization and Magnetic Effects in Radical Reactipfkadamia Kiado;
approximation. The latter is always higher if the initial Budapest, 1984.

distributions are the same, but the recombination of RIPs startedChe(r%) Eﬁyst%%\g '3\131-? As?ésigg?VUOEA-D‘I?;JCF}?NT%?‘-G% "ﬁﬁﬂci'g'ég‘ég”
from contact is stronger at fast spin conversion and their 51, Stéss, D. V.: Lukzén, N. N_’; T.adj'i’kov, B. M.; Molin, Yu. KChem.

separation quantum vyield is lower than it is in reality. Phys. Lett.1995 233 444,
Such a high sensitivity to a small variation of initial interion (3) Mataga, N.; Kanda, J.; Okada, I..Phys. Chem1986 90, 3880.

; ; taga, N.; Asahi, T.; Kanda, J.; Okada, T.; KakitaniChem. Phys1988
distances is a consequence of a very sharp space dependen 7.249. Gould, I. R Ege, D.: Matters, S. L.: Farid,J5Am. Chem. Soc.

of the recombination rat®#Vx(r) determined by electron tun- 1987 109 3794. Gouid, I. R.; Farid, S.. Phys. Cheml993 13067. Gan,
neling. The origin of the effect is actually the same as in H.; Leinhos, U.; Gould, I. R.; Whitten, Dl. Chem. Phys1995 99, 3566.
scanning tunneling microscopy. Therefore, the contact simpli- _ (4) Asahi, T.; Mataga, NJ. Phys. Chem1989 93, 6575. Grampp,

. : . : G.; Hetz, G.Ber. Bunsen-Ges. Phys. Chet®92 96, 198. Kakitani, T.;
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